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Abstract. Field-theoretic renormalization group theory is applied to the analysis of the
asymptotic behaviour of diffusion in random velocity fields, each non-vanishing component
of which is independent of the coordinate along the direction of that component. Below
the critical dimension d. = 3, the corresponding field theory is shown to have a
non-trivial infrared stable fixed point of the renormalization group, which controls the
iong-lime, iarge-distance behaviour of the modei. The anomaious dimensjon v has been
found exactly in the ¢ = 3 — d expansion, and the leading logarithmic corrections to
the normal diffusion at d = 3 have been determined for all d': 1 § 4' € d, where d’
is the number of components of the drift field.

Asymptotic behaviour of random walks in random media depends heavily both on the
character of the effective driving random velocity field and on the range of its correla-
tions: the potential part of the field hinders diffusion, whereas the divergenceless part
enhances it, and the values of the corresponding critical exponents and dimensions
depend on the range of the correlations [1,2]. In this letter we consider a family
of recent]y proposed [3,4]} models of diffusion in a dwergenceless random field of a
bpuum spatial structure, which exhibit .superal_yuswe behaviour, i.€. the mean-squaré
disptacement of the random walks grows faster than linearly with time. The original
model is connected with the description of ground water transport in heterogeneous
rocks [3]. The basic feature of the unidirectional velocity field in this model is that it
is independent of the coordinate along the field direction. The properties of diffusion
in this unidirectional convection model and its isotropic generalization (‘Manhattan

ariAd? panuantinm hova hane sacanthe grivdiad hath anolotinnllhy and nuneasanlle [A47
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In this letter, the problem is considered in a field-theoretic framework, in which
the earlier results for the critical exponent v of the mean-square displacement are
confirmed and gencralized. The critical dimension is confirmed to be d, = 3, the
critical exponent v is determined at arbitrary dimensionality for both the unidirec-
tional and isotropic Manhattan convection, and the corresponding results are also

nhtainad far tha intarmadiate caca nf (' / dY- rh ancinnal Manhattan ranuvactinn in
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a d-dimensional space.

Consider a d-dimensional continuum system with stationary random velocity ficld
F in z-direction: F' = e 1(y), where the function 4 is a function of the transverse
y coordinate only. The probability distribution P(t, z,y) of a tracer particle at (z,y)
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in a fixed field obeys the following diffusion equation

o L8 Lo 9 _
é—t—DOa—y'E—Dn-a';i—w(y)—a*; P(i,m,y)"—“L.pP(t,I,y):O (1)

where DY and D] are the bare (unrenormalized) diffusion coefficients in the lon-
gitudinal and transverse directions, respectively. The random field 1 is assumed to
have a Gaussian distribution with zero mean and the correlation function

(B (y")) = XAb(y — o) 2)

Here, the (non-negative) bare coupling constant A, describes the strength of the
disorder.

We shall calculate the Green function of the equation (1), averaged over the
random field . This stochastic problem may be cast into a field-theoretic form by
the use of the functional-integral representation of the Green function

Gylt—t,z— ' y.9)
= ]D@Dé w(t,m,y)é(t’,w',y')eXPUdtdrdyéL.psr)] .

Averaging over the distribution (2) we arrive at a functional integral over three fields
@, @, and ¢ for the @ Green function G, = {G,) of the field theory with the
‘action’

8 50 9?2
ot 0

5‘——L fdyv,bz-i- rdid:r:d 5 DY — ~ Df—— - ( )i.| (3)

=T, ] vel ay? " gz ~ VWG [¥ B
It should be noted that since the field 4+ does not depend on the variables t and z,
there are no integrals over the Laplace variable and the momentum corresponding
to the longitudinal coordinate z in the Laplace-momentum representation of the
diagrammatic expansion of the Green function G,. To determine the upper critical
dimension of the field theory (3), we introduce for each variable v three scaling
dimensions d%, d-, and dI corresponding to the time, longitudinal and transverse
coordinates, respectively. The scaling dimensions of all variables are determined from
the condition that the action (3) is dimensionless with respect to time, longitudinal,
and transverse coordinates separately. Ultimately, we are interested in the scale
transformation, in which the bare propagator g, of the field theory (3) in the Laplace-
momentum representation gy(s, k,p) = 1/(s + D5k? + DI p?) is a homogeneous
function of order —2 of its Laplace and momentum arguments:

go(A%s, Ak, Ap) = A™%gy(s, k,p). (4)

The total scaling dimension of a variable v in such a scale transformation is there-
fore d, = 2d% + dl' + dT. For example, for the diffusion coeflicients we obtain
d%hr = dy, = 1, diyr = d5, =0, and dp. = dpyr = —2, which yield for the total
dimensions the value dpr = dp. = 0. The scaling dimensions of bare and renor-
malized diffusion coefficients are the same; we have therefore omitted the subscript
‘0’ in the preceding formulae. This is not so in the case of the coupling constant;
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therefore the subscript must be retained. For the coupling constant A, we obtain
% =2, d5, = -2, and df_ = (1 - d), thus d), = (3 — d), from which it follows
that the critical dimension of the model is d_ = 3.

Power counting in the graphs shows that the field theory (3) at three dimensions
is not only renormalizable, but even superrenormalizable, i.c. it possesses only a finite
number of superficially divergent graphs. The reason is that all the momentum factors
generated by the derivative at the interaction vertex of the action (3) are factorized in
the graphs of the model, since there are no momentum integrals over the longitudinal
momentum variable. These momentum factors are, however, taken into account in
determining the critical dimension of the model; therefore it is obvious that the higher
the order of a particular graph, the faster the integrand of the graph must fall off at
large transverse momenta.

In fact, there is only one superficially divergent graph left in the present model,
the one-loop seif-energy graph. Hence, in the minimal subtraction scheme there is
only one renormalization constant Z, and the renormalized action may be written in
the form

R , 8 .o L 8 Kl
Sn=-giz [+ [atdzays| 2 - DT o - 2DN T — v |
)

where we have introduced renormalized diffusion constants D¥ and DT, renormalized
coupling constant )\, and a scale-setting parameter g of dimension of transverse
momentum in order to make the renormalized coupling constant dimensionless under
the scale transformation (4). As usual, e = d_—d = 3 —d. In general, the parametcrs
A and DT differ from their bare counterparts at most by a finite renormalization, and
in the minimal subtraction scheme Au® = X, and DT = D, whereas D} = Z D"

The only superficially divergent one-particle irreducible graph corresponds to the
expression

dp 1
(2m)4-1 s+ DVk? + DTp?
_ FAueT(e/2) )
= - (4,“)1—;/2(1)'1‘)1-:/2(3 + DLk2)e/? (6)

where T is the gamma function. Due to superrenormalizability of the model, the
one-loop expressions for the renormalization constant Z, the anomalous dimension
v of the longitudinal diffusion coefficient and the beta function extracted from (6),
are perturbatively exact in the minimal subtraction scheme. It should be noted that
the asymptotic behaviour of the model is not determined by the coupling constant
A, but by a totally dimensionless expansion parameter w, which is dimensionless with
respect to time, longitudinal and transverse coordinates separately. From inspection
of the perturbation expansion, we infer the following expression for this parameter:
u = A/ DT D', From (6) we obtain

T, = —k*apuc

u
Z=1- Py €]
which yields for the anomalous dimension of the longitudinal diffusion coeflicient the

expression
dln DV
dp

U

din Z
- =-3r ¥

=—H
lo du

Hu)=p

1]
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where the subscript denotes that the derivative is taken at fixed values of the bare
parameters DY, D}, and X,. The asymptotic behaviour of the model is determined
by the beta function

d
Alu) = ud—:

u
= u(-e+ =), ©)
Dimensional analysis yields for the renormalized Green function G the relation

R(z/V DU, yu,tp? DT u)
(DL)L/2( DTY(@~1)/23d/3

G(t,z,y; 1., D*, DT u) = (10)

Together with the basic renormalization group (RG) equation

a
aDL

[ua% + v(u) DY + ﬁ(u)a—i] G=0

which expresses the independence of the Green function G, of the arbitrary scaling
parameter u, the relation (10) leads to the equation

8 {u) a8 a a Y(u) _

from which the asymptotic behaviour of the Green function G may be inferred.
If the running coupling constant is considered as a function of time, then the
exact expressions (8} and (9) yield the solution of the equation (11) in a closed form:

G(l!a_:!yt—ljz;l"ﬂDL!DT!ﬁ) (12)
ta/2+e /4y f2me + (1 — uf2me)t-c/YL/2

G(t,x,y; 1, DV, DT u) =

where Z and @ are the first integrals of equation (11):

= _ T U o 2we
°= (11/24“/4)\/; YT T 2rejujte2 (13)

The beta function (9) has two fixed points: the Gaussian fixed point uy; = 0 and the
non-trivial fixed point u* = 2ne, of which the former is infrared stable for d > 3,
and the latter for d < 3, as may be seen from (13), where # — O in the limit £ — oo,
when ¢ = 3 — d < 0, whereas & — 2ne, when € > 0. Therefore, the asymptotic
behaviour above three dimensions corresponds to the usual diffusion, whereas below
three dimensions anomalous behaviour governed by the non-trivial fixed point u*
occurs. At three dimensions logarithmic corrections to the usual diffusion result.

From the relations (12) and (13} it follows that in the transverse directions the
diffusion, as described by the the long-time behaviour of the mean-square displace-
ment, is normal, whereas in the longitudinal direction below three dimensions the
behaviour of the mean-square displacement is superdiffusive:

(€2(t)) ~ tite/2 = ((5-4)/2 (14)

Here, the bar denotes the thermal average, and the brackets the average over the
random drift. The relation (14) determines the value of the exponent v, defined by
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{x2(t)) ~ t?, exactly in the s-expansion » = (5 — d)/4. At three dimensions the
mean-square displacement grows as

(& (D) ~ tint. )

The relation (14) generalizes the two-dimensional result of [3,4] to arbitrary dimen-
sionality, and the logarithmic correction in the relation (15) is also in agreement with
the earlier heuristic result [4]. The scaling form of the longitudinal distribution of
displacements follows from (12) upon integration over the transverse coordinates

((5—d)/4
GL(t,z)E/dyG(t,x,y)N%Tq—) t—oo d<3.

Unfortunately, the RG argument does not allow to obtain information of the form of

tha nanling funmarinem Anag tha sartirhatins awvaoneine af tha leaan fanction

lllb o\.auu; Tunciion J, NoTr 4oCs tiic Pblll.ll Uaduivril UAPGIIOIUAI Of tne OTEEn function
G lead to any definitive conclusions about the asymptotic behaviour of the function
f; therefore in this respect one has to rely on the previous heuristic arguments and
numerical results [4].

The generalization of the problem (1) and (2) to the case of a velocity field with
a (d' € d)-dimensional ‘Manhattan grid’ structure [4,5] is described by the equation

5 d—d’ 52 d’
= . DT
{Bt 0 ﬂ; 82, ZI[ wrr

. a
— Y (Zyy ey E e B Yy ,yd_d,)a—-]}P(t,z) =0 (16)
xl‘l

where the coordinates in the unbiased (‘transverse’) directions have been denoted by
Y, D%" is the bare transverse diffusion coefficient, and D, are the bare diffusion
coefficients in the biased directions. The hat over the argument of a i function
means that the function does not depend on that coordinate. The random fields 1,
have Gaussian distributions with zero mean and the correlation functions

4’
(Y (@, WY@ ¥)) = S don6(y —3) [ ] 8(2; - 2}) - 17
I#n

The field theory corresponding to (16) and (17) is determined by the action

Z/(H dz )d

m#n

&2

-d' @' §? o
+/dtda:dycp[ E o Z(D""axz _w“:‘i‘-;—)]%
(

Ym n=]

It is convenient to carry out dimensional analysis by introducing separately dimen-
sions with respect to each biased coordmate, and defining the total scaling dimension

of a variable v by d, = 2d% 4+ dT + °%_, d . The total dimensions of the bare
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coupling constants A, are d, = 3 — d, i.e. the critical dimension of this model is
d. = 3, too. Power counting shows that this field theory is not superrenormalizable:
there is an infinite set of different superficially divergent graphs in its perturbation
expansion. However, as a result of the vertex momentum factorization, only the dif-
fusion constants D, are renormalized (apart from finite renormalization), and the
renormalized action may be obtained from (18) by the substitutions A, = X, u%,
DY = DT, and Dy, = D,Z,, where X, DT, and D, are the renormalized
parameters of the model, and -Zﬂ are the rcnorma]ization oonstants of the corre-
sponding diffusion coefficients. The totally dimensionless expansion parameters are
u, = A /(D, \/ (DTyd-¢' 112 4n Dpm ) which correspond to the following choice of
the dimensionality of the scaling parameter p: d, = 1/2, d% = d, = 0.

In the one-loop approximation the values of the renormalization constants are
obtained from the same integral (6) as in the case of unidirectional convection and
are equal to (in the minimal subtraction scheme)

u
Z. o =1- L] cee,
n 21rs+ (19)

The interaction vertices in the action (18) are unrenormalized, therefore

=u, (—s e % i‘: ‘rm) 20)

m#En

du
=gy

1]

where «,, arc the anomalous dimensions of the diffusion coefficients defined as

dln D

din Z
Vn(uu---aﬂd)—ﬂT —H n

o_ dp

(21)

0

At one-loop order we obtain from (19-21)

dl
ﬁnzun(—€+——+a Z'Hm).

m#En

The fixed-point equations 3, = 0 have several non-trivial solutions, i.e. solutions in
which at least one of the coupling constants u, does not vanish. It can be readily
seen that there is a unique non-trivial fixed point with al/ non-vanishing components:
u;, = 4mwe/(d’'+1); there are d’ fixed points such that one of the coupling constants is
zero and the others not: u}, =0, u}, = 4me/d’ m # n; there are d'(d'~1)/2 fixed
points with two vanishing coupling constants the others being equal to 4me/(d' — 1),
etc. Finally, there are d’ non-trivial solutions with only one non-vanishing coupling
constant equal to u;, = 2we. Formally, the stability of these fixed points is determined
by the eigenvalues of the matrix 83, /du,, at the fixed point, and it turns out that
this matrix is positively determined below the critical dimension d < 3 only in the
case of the fixed point with all non-vanishing coupling constants, which means that
in the general case this isotropic fixed point governs the long-distance and long-time
asymptotic behaviour of the model, regardless to the initial values of the diffusion
constants and the coupling constants in the biased directions {provided the latter do
not vanish). However, if we put some of the coupling constants equal to zero from
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the very beginning in the action (18), then the corresponding vertex factors are not
generated in the course of renormalization. The reason is that the derivatives at
the vertices, to which the external » and ¢ legs are attached, always yield factors
with momenta corresponding to coupling constants already present, and thus leave no
possibility for a new vertex with linear momentum dependence to appear. In this case
the fixed point with the chosen coupling constants vanishing and the rest non-zero

turns out to be infrared stable!
The absence of the (divergent) vertex renormalization in this model

L3 GLASWAIWAY L8 REEW \MEVLE BWAIL) Ywiten AWEIVIiuGL L8 L8 1] RALLS ARfusseNiE X

portant consequence that the fixed point equation of the RG determines- th noma-
lous dimensions v, of the diffusion coefficients exactly in the e-expansion. This
phenomenon is familiar from earlier studies of diffusion in divergenceless random
fields [2,6]). From (21) we thus obtain

:"

.be im

o (gt N 2¢  _2(d-3) p
Tallgyeeeyitg ) —_d’+1_ d"+1 . \

7
Lk

Y
7

With the aid of dimensional analysis the RG equation may be written in the form

[2t—+2( ) "B +Zﬂﬂ3 +d——27":| (23)

The leading asymptotic behaviour at long times and large distances is given by the
solution of the equation (23) at the infrared stable fixed point of the RG, at which

G(t, 2., Ymi i, D, DT, ul)

_ Gz, A+~ gy [V, Dy, DT, )
(3 +d)/(d'+1)

(24)

where u?, = 4me/(d’ + 1). From this expression we obtain the perturbatively exact
value of the exponent v = (4 +d' — d)/2(d’ + 1) for d < 3 in the biased directions.
For the isotropic case d’ = d this is in accord with the earlier heuristic result [4]. For
the mean-square displacement we therefore obtain

(Euz_(a) ~ A —d)/ (4 41) t — 00 (25)
below three dimensions. Logarithmic corrections of the form
(€2(1)) ~ t(In 1)/ E+D) t — o0 (26)

occur at three dimensions, and the diffusion is normal above three dimensions. The
results for the case of random unidirectional convection (equations (14) and (15)) are
recovered by the substitution d’ = 1 in (25) and (26).
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