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AbslraeL Field-theoretic renormalmtian group theory is applied to the analysis of the 
asymptotic behaviour of diffusion in random velocily fields, each non-vanishing component 
of which is independent of the coordinate along the direction of thal component. Below 
the crilical dimension d ,  = 3, the corresponding field thmry is shown to have a 
non-trivial infrared stable 6xed point of the renarmaliralion group, which controls the 
iong-time, iarge-distance behaviour of the modei. iine anamaious dimension Y has been 
found exactly in the c = 3 - d npansion, and the lading logarithmic corrections lo 
the normal diiiusion at d = 3 have been determined for all d': 1 < d' < d ,  where d' 
is the number of components of the drift field. 

Asymptotic behaviour oi random war !  in random media depends heaviiy both on the 
character of the effective driving random velocity field and on the range of its correla- 
tions: the potential part of the field hinders diffusion, whereas the divergenceless part 
enhances it, and the values of the corresponding critical exponents and dimensions 
depend on the range of the correlations [1,2]. In this letter we consider a family 
of recently proposed [3,4] models of diffusion in a divergenceless random field of a 

displacement of the random walks grows faster than linearly with time. The original 
model is connected with the description of ground water transport in heterogeneou 
rocks [3]. The basic feature of the unidirectional velocity field in this model is that it 
is independent of the coordinate along the field direction. The properties of diffusion 
in this unidirectional convection model and its isotropic generalization ('Manhattan 
E.," W.l""LL"", ,,a"- "CCll ,CCCL,L,y a,"",- U",,, LL..LL,yL'Car,y LLl.." .."L,,C"L.,"y LTJ. 

In this letter, the problem is considered in a field-theoretic framework in which 
the earlier results for the critical exponent v of the mean-square displacement are 
confirmed and generalized. The critical dimension is confirmed to be d ,  = 3, the 
critical exponent Y is determined at arbitrary dimensionality for both the unidirec- 
tional and isotropic Manhattan convection, and the corresponding results are also 

a d-dimensional space. 
Consider a d-dimensional continuum system with stationary random velocity field 

F in I-direction: F = e,+(y), where the function + is a function of the transverse 
y coordinate only. The probability distribution P (  t ,  I, y) of a tracer particle a t  ( z , ~ )  

speeia; spaiia; RruCiure., -which s u p e r ~ ~ ~ u ' u s ~ v e  'uef,avioui, meal-square 
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in a ked field obeys the following diffusion equation 

where Dk and Df are the bare (unrenormalized) diffusion coefficients in the lon- 
gitudinal and transvene directions, respectively. The random field @ is assumed to 
have a Gaussian distribution with zero mean and the correlation function 

(v%)G(v')) = XOb(Y - U') (2) 

Here, the (non-negative) bare coupling constant A, describes the strength of the 
disorder. 

We shall calculate the Green function of the equation (l), averaged over the 
random field $. This stochastic problem may be cast into a field-theoretic form by 
the use of the Cunctional-integral representation of the Green function 

C*( t - t' , r - I' , y, y') 

= / D v D @  v(t, x,v)@(t', x',v') exp [ /d tdz  dv@L+v] 

Averaging over the distribution (2) we arrive at a functional integral over three fields 
v, @, and $ for the p@ Green function Go = (C,) of the field theory with the 
'action' 

It should be noted that since the field $ does not depend on the variables t and x, 
there are no integrals over the Laplace variable and the momentum corresponding 
to the longitudinal coordinate 2: in the Laplace-momentum representation of the 
diagrammatic expansion of the Green function Go. 'RI determine the upper critical 
dimension of the field theory (3), we introduce for each variable U three scaling 
dimensions d:, dk ,  and d: corresponding to the time, longitudinal and transvene 
coordinates, respectively. The scaling dimensions of all variables are determined from 
the condition that the action (3) is dimensionless with respect to time, longitudinal, 
and transverse coordinates separately. Ultimately, we are interested in the scale 
transformation, in which the bare propagator go of the field theory (3) in the Laplace- 
momentum representation go(s, k , p )  = l/(s + Dkk2 + D f p 2 )  is a homogeneous 
function of order -2 of its Laplace and momentum arguments: 

go(AZs, A k , b )  = A - 2 g o ( s , k , p ) .  (4) 

The total scaling dimension of a variable U in such a scale transformation is there- 
fore d ,  = 2d: + d i  + d: . For example, for the diffusion coefficients we obtain 
d& = d;,, = 1, dk,  = dzL = 0, and dk ,  = daT = -2, which yield for the total 
dimensions the value d,, = dDL = 0. The scalmg dimensions of bare and renor- 
malized diffusion coefficients are the same; we have therefore omitted the subscript 
0 m the preceding formulae. This is not so in the case of the coupling constant; ' . .  
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therefore the subscript must be retained. For the coupling constant A, we obtain 
d i 0  = 2, d& = -2, and dTo = (1 - d) ,  thus dAo = (3 - d ) ,  from which it follow5 
that the critical dimension of the model is d, = 3. 

Power counting in the graphs shows that the field theory (3) at three dimensions 
is not only renormalizable, but even superrenormafizabfe, i.e. it possesses only a finite 
number of superficially divergent graphs. The reason is that all the momentum factors 
generated by the derivative at the interaction vertex of the action (3) are factorized in 
the graphs of the model, since there are no momentum integrals over the longitudinal 
momentum variable. These mOmenNm factors are, however, taken into account in 
determining the critical dimension of the model; therefore it is obvious that the higher 
the order of a particular graph, the faster the integrand of the graph must fall off at 
large transverse momenta. 

In fact, there is only one superficially divergent graph left in the present model, 
the one-loop self-energy graph. Hence, in the minimal subtraction scheme there is 
only one renormalization constant 2, and the renormalized action may be written in 
the form 

(5)  
where we have introduced renormalized diffusion constants DL and DT, renormalized 
coupling constant A, and a scale-setting parameter /I of dimension of transverse 
momentum in order to make the renormalized coupling constant dimensionless under 
the scale transformation (4). As usual, E = d, - d = 3 - d. In general, the parameters 
X and DT differ from their bare counterparts at most by a finite renormalization, and 
in the minimal subtraction scheme Apt = A, and DT = D:, whereas Do" = ZDL. 

The only superficially divergent one-particle irreducible graph corresponds to the 
expression 

where r is the gamma function Due to superrenormalizability of the model, the 
one-loop expressions for the renormalization constant 2, the anomalous dimension 
y of the longitudinal diffusion coefficient and the beta function extracted from (6), 
are perturbatively eract in the minimal subtraction scheme. It should be noted that 
the asymptotic behaviour of the model is not determined by the coupling constant 
A, but by a totally dimensionless expansion parameter U, which is dimensionless with 
respect to time, longitudinal and transverse coordinates separately. From inspection 
of the perturbation expansion, we infer the following expression for this parameter: 
U = X/DTDL. From (6) we obtain 

U Z = l - -  
2 7re (7) 

which yields for the anomalous dimension of the longitudinal diffusion coefficient the 
expression 
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where the subscript denotes that the derivative is taken at fixed values of the bare 
parameters DT, Dk, and A,. The asymptotic behaviour of the model is determined 
by the beta function 

(9) 

Dimensional analysis yields for the renormalized Green function C the relation 

Tbgether with the hasic renormalization group (RG) equation 

which expresses the independence of the Green function Go of the arbitrary scaling 
parameter p, the relation (10) leads to the equation 

from which the asymptotic behaviour of the Green function G may be inferred. 
If the running coupling constant is considered as a function of time, then the 

exact expressions (8) and (9) yield the solution of the equation (11) in a closed form: 

where z and G are the first integrals of equation (11): 

The beta function (9) has two fixed points: the Gaussian fixed point U; = 0 and the 
non-trivial fixed point U* = 2 m ,  of which the former is infrared stable for d > 3, 
and the latter for d < 3, as may be seen from (13), where ii - 0 in the limit t --t CO, 

when E = 3 - d < 0, whereas ii - 2 m ,  when E > 0. Therefore, the asymptotic 
behaviour above three dimensions corresponds to the usual diffusion, whereas below 
three dimensions anomalous behaviour governed by the non-trivial fixed point U* 
occurs. At three dimensions logarithmic corrections to the usual diffusion result. 

From the relations (12) and (13) it follows that in the transverse directions the 
diffusion, as described by the the long-time behaviour of the mean-square displace- 
ment, is normal, whereas in the longitudinal direction below three dimensions the 
behaviour of the mean-square displacement is superdiffusive: 

(r2(t)) ~ i 1 t c / 2  = t ( 5 - d ) / ~ .  (14) 

Here, the bar denotes the thermal average, and the brackets the average over the 
random drift. The relation (14) determines the value of the exponent U, defined by 
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(zZ(t))  - 1'". exactly in the e-expansion Y = ( 5  - d ) / 4 .  At three dimensions the 
mean-square displacement grows as 

- 

- 
( z ' ( t ) ) - t l n t .  (15) 

The relation (14) generalizes the two-dimensional result of [3,4] to arbitrary dimen- 
sionality, and the logarithmic correction in the relation (15) is also in agreement with 
the earlier heuristic result [4]. The scaling form of the longitudinal distribution of 
displacements follows from (12) upon integration over the transverse coordinates 

Unfortunately, the RG argument does not allow to obtain information of the form Of 
L L l r  ".A""& LYI.CLI"II  , , ll"l U U C I  L l l r  yc,LY1"'l,,w" c*y'l"'LwA, "l LI.C U.CC.I L"I.L.LI".. 

G lead to any definitive conclusions about the asymptotic behaviour of the function 
f; therefore in this respect one has to rely on the previous heuristic arguments and 
numerical results [4]. 

The generalization of the problem (1) and (2) to the case of a velocity field with 
a (d' < d)-dimensional 'Manhattan grid' structure [4,5] is described by the equation 

.L,. .."..I:"" C.."".:,." I ",.. A-"" *I.̂  -" _...- I....:-.. "-""":-- ,.c .La P.raa" C.."rr:nn 

- $ n ( z l r . .  92,. . . . ?xdlryl, .  . . , y d - d , ) -  a ] } P ( t . z )  = 0 (16) 

where the coordinates in the unbiased ('transverse') directions have been denoted by 
y, D;f is the bare transverse diffusion coefficient, and Do, are the bare diffusion 
coefficients in the biased directions. The hat over the argument of a 1c, function 
means that the function does not depend on that coordinate. The random fields $,, 
have Gaussian distributions with zero mean and the correlation functions 

8% 

d' 

($n(z,Y)lc,"(z',?/')) = L n X 0 , 6 ( Y  - Y') 6(2f - 4) ' (17) 
I#n 

The field theory corresponding to (16) and (17) is determined by the action 

d' az 
m=1 ay; "=I 

d-d' 

-- 

(i8j 

It is convenient to carry out dimensional analysis by introducing separately dimen- 
sions with respect to each biased coordinate, and defining the total scaling dimension 
of a variable 2) by d, = 2d: + d: + E:=, d: . The total dimensions of the bare 
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coupling constants A, are dAom = 3 - d, i.e. the critical dimension of this model is 
d, = 3, too. Power counting shows that this field theory is not superrenormalizable: 
there is an infinite set of different superficially divergent graphs in its perturbation 
expansion. However, as a result of the vertex momentum factorization, only the dif- 
fusion constants Do, are renormalized (apart from finite renormalization), and the 
renormalized action may be obtained from (18) by the substitutions A,, = A,pc, 
DT = DT, and Do, = D,Zn, where A,, DT,  and D ,  are the renormalized 
parameters of the model, and .Z, are the renormalization constants of the corre- 
sponding diffusion coefficients The totally dimensionless expansion parameters are 

which correspond to the following choice of 
the dimensionality of the scaling parameter p: d; = 1/2,  d; = d: = 0. 

In the one-loop approximation the values of the renormalization constants are 
obtained from the same integral (6) as in the case of unidirectional convection and 
are equal to (in the minimal subtraction scheme) 

d' 
U, = A n / ( D ,  (DT)d-d '  IImgn Dm 1 

The interaction vertices in the action (18) are unrenormalized, therefore 

where y, are the anomalous dimensions of the diffusion coefficients defined as 

At one-loop order we obtain from (19-21) 

d' 1 
p, = 21" ( - E  + + - U, 

2rr 4 r r m # n  

The fixed-point equations 0, = 0 have several non-trivial solutions, i.e. solutions in 
which at least one of the coupling constants U, does not vanish. It can be readily 
seen that there is a unique non-trivial fixed point with all non-vanishing components: 
U', = 4m/( d'+l);  there are d' fixed points such that one of the coupling constants is 
zero and the others not: U', = 0, U;, = 4 m / d '  m f n; there are d'(d'- 1)/2 fixed 
points with two vanishing coupling constants the others being equal to  4 m / ( d '  - l), 
etc. Finally, there are d' non-trivial solutions with only one non-vanishing coupling 
constant equal to U', = 2 m .  Formally, the stability of these fixed points is determined 
by the eigenvalues of the matrix ap,/au, at the fixed point, and it turns out that 
this matrix is positively determined below the critical dimension d < 3 only in the 
case of the fixed point with all non-vanishing coupling constants, which means that 
in the general case this isotropic fixed point governs the long-distance and long-time 
asymptotic behaviour of the model, regardless to the initial values of the diffusion 
constants and the coupling constants in the biased directions (provided the latter do  
not vanish). However, if we put some of the coupling constants equal to zero from 
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the very beginning in the action (18), then the corresponding vertex factors are not 
generated in the course of renormalization. The reason is that the derivatives at 
the vertices, to which the external 'p and @ legs are attached, always yield factors 
with momenta corresponding to coupling constants already present, and thus leave no 
possibility for a new vertex with linear momentum dependence to appear. In this case 
the k e d  point with the chosen coupling constants vanishing and the rest non-zero 
turns out to be infrared stable! 

portant consequence that the k e d  point equation of the RG determines the anoma- 
lous dimensions y, of the diffusion coefficients eracity in the €-expansion. This 
phenomenon is familiar from earlier studies of diffusion in divergenceless random 
fields [2,6]. From (21) we thus obtain 

%.e Ihse"pP of the (dkergen!) vertex renar!x+!imic!! i!! !!k ?I?cde! h a  !he LE- 

2 E  2 ( d - 3 )  
d ' +  1 d ' + ' l  . _. la.* -.* \ - ̂. - ~- 

r n \ w l  ,..., U&,  = , - -- - (22) 

With the aid of dimensional analysis the RG equation may be written in the form 

The leading asymptotic behaviour at long times and large distances is given by the 
solution of the equation (23) at the infrared stable fixed point of the RG, at which 

G(t, I,, y,; P ,  Dn3 DT, U', )  

(24) 

where U', = 47re / (d '+  1). From this expression we obtain the perturbatively erocr 
value of the exponent U = (4 + d' -  d ) / 2 ( d ' +  1) for d < 3 in the biased directions. 
For the isotropic case d' = d this is in accord with the earlier heuristic result [4]. For 
the mean-square displacement we therefore obtain 

~- 
(25) (zZ(t)) t ( 4 t d ' - d ) / ( d ' t l )  t 

below three dimensions. Logarithmic correctiom of the form 
- 

(26) (a?(t)) - t(ln t )  Z / ( d ' + l j  t - oo 
occur at three dimensions. and the diffusion is normal above three dimensions. The 
results for the case of random unidirectional convection (equations (14) and (15)) are 
recovered by the substitution d' = 1 in (25) and (26). 
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